
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 684
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

NEWS APPLICATION FOR FAST NEWS ALERTS
BASED ON ONTOLOGY THEORY AND

AUTONOMIC RSS: DISCARDING IRRELEVANT
NEWS

 Mrs. Shraddha Khonde MS.Ankita Amburle Ms.Prachi Kshirsagar Ms.Samruddhi Bhilare Mrs.Chinmay Deshpande

Abstract—
NEWS APPLICATION FOR FAST NEWS ALERTS BASED ON ONTOLOGY THEORY AND AUTONOMIC RSS: DISCARDING IRRELEVANT
NEWS is an application that accepts and processes requests from the patron: end users. Besides the local server database (for storing
keywords).This application also integrates databases from online news and newspapers. To maintain the speed of the news retrieval we aim at
building a parser to parse the RSS of various international news papers. The search engine such as Google, Bing, yahoo enables users to
express search query by means of one or more keywords. This paper proposes a system called generalized inverted list for keyword search. The
main function of inverted lists is to enable fast full text searches at increased speed when a document is submitted to database. Since inverted
lists are large, some techniques are projected to reduce storage space and disk I/O time. However, we propose more efficient index structure
called GINIX (Generalized inverted index) that groups consecutive ID’s in inverted list into intervals to save storage space. The system
performance can be increased by using two scalable algorithms. The evaluation results shows that GINIX requires less space and improves the
keyword search performance compared with existing inverted indexes.

Keywords: keyword search; index compression; document reordering

-----—————————— ——————————

1. INTRODUCTION
Keyword search is a crucial technology. Search engines that
index the Web provide a spread and ease of access to knowledge
that was impossible only a decade ago. Keyword search has also
grown a significant at the other end of the size spectrum. For
example, the services built into web rely on active text search,

and desktop search systems help users locate the links and
information on the web. Search engines are structurally similar
to database systems. Documents are stored in a warehouse, and
an index is maintained.

Queries are evaluated by processing the index to identify
matches which are then returned to the user. However, there are
also many differences. Database systems must contend with
arbitrarily complex queries, whereas the vast majority of queries
to search engines are lists of terms and phrases. Queries are
evaluated by processing the index to identify matches which are
then returned to the user. However, there are also many
differences. Database systems must contend with arbitrarily
complex queries, whereas the vast majority of queries to search
engines are lists of terms and phrases.

1.1 Application
The application will fetch all the current information from the
sources like Newspapers, Blogs, and the related online available
source etc. and therefore it includes three phases:

• Input query
The user will input query to the search engine which he/she
want to retrieve information. For ex
Input query=’Business’

• Search results
The search engine will investigate all the recent information
about the keyword ‘Business’ using GINIX.
• Display Results

The related information about ‘Business’ will display according
to the index.
The following system architecture gives you the brief idea about
how the application works.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 685
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 FIG 1.SYSTEM ARCHITECTURE

2. Related Work

The authors have performed several works before. However,
many compression techniques have been proposed to reduce the
storage space and disk I/O time. However, these techniques
usually perform decompression operations on the fly, which
increases the CPU time. The technique of inverted indexes for
fast query evaluation is proposed by [1]. W. Sheih presented a
document identifier assignment technique for inverted file index
compression[2]. H.Yan proposes a Inverted index compression
and query processing with optimized document ordering[3].
A.Chandel presents an algorithm for fast indexes and selected
queries[4]. H. Wang shows a technique of ranked keyword
search on graphs known as BLINKS. It is a bi-level indexing and
query processing scheme for top-k keyword search on graphs
based on backward search strategy[5]. J. Zobel proposed an
system that uses inverted file for text search engine. Search
Queries are evaluated by processing the index to identify
matches which are then returned to the user[6]. G.Li performs
the analysis on An effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data. It is a novel
ranking mechanism for enhancing search effectiveness[7]
V.N.Anh proposes a new approach allows extremely fast
decoding of inverted lists during query processing, while
providing compression rates better than other high-throughput
representations[8].J.Zhang includes caching mechanism in
inverted index that search engines use several levels of caching
to improve query throughput[9].

3. Proposed Work
This paper proposes three types of algorithm:

3.1 Scan line algorithm
The scan-line movement maintains a reference counter to count
the number of intervals that the scan-line is currently hitting. The
counter is incremented by 1 when the scan-line hits a lower
bound and is decremented by 1 when it hits an upper bound. If
the counter increases from 0 to 1 (which means that the scan-line.
is processing an interval), the current boundary is saved in
variable a. When the counter decreases from 1 to 0 (which means
that the scan-line will not hit any interval before it hits another
lower-bound), the current boundary is saved in variable b and a;
b is returned as the resulting interval. The heap-based merge is
used on all the interval lists to enumerate all the lower bounds
and upper bounds in ascending order.

3.2 Improved Scan line algorithm

Input: X → set of interval lists
Output: Z→ resulting interval list

1. for all k є [1,n] do

2. Let x1 be the first interval Xm
3. Insert lb(x1) and ub(x2) to min heap H
4. a←0,b←0,c←0
5. while H≠ φ
6. Let t be the top element in H
7. Pop t from H
8. if t is lower bound then
9. c←c+1
10. if c=1 then a←1
11. if t is upper bound then
12. c←c-1
13. if c=0 then b←1 and then append[a, b] to G
14. Let r є Rj be the corresponding of t
15. Let r’ be the next interval or r in Rj

16. Insert lb(r’) and ub (r’) to H
 return Z

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 686
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The performance of the scan-line-based algorithm can be
improved by maintaining an active interval to denote the current
result interval. Similar to the SCANLINEUNION algorithm, at
the beginning, all pointers are pointing to the first intervals in
the interval lists and the active interval is set to be empty. The
difference is that only lower bounds are inserted into the heap.
In each step, the algorithm first pops up the minimum lower
bound in the heap, and then extends the active interval if the two
intervals overlap. Finally, the lower bound of the next interval in
the corresponding list is pushed into the heap. If the interval
corresponding to the popped lower bound (denoted by r) and
the active interval do not overlap, active interval is returned as a
resulting interval and its lower and upper bounds are updated to
lb.r/ and ub.r/. The details of this algorithm, called the
SCANLINEUNION+ algorithm.

3.3 Twin Heap algorithm

The performance of the basic scan-line algorithm can be
improved by maintaining an active interval that indicates the
interval currently being processed. However, a single heap is not
sufficient because the lower and upper bounds must be
maintained separately. The new TWINHEAPISECT algorithm is
illustrated in The TWINHEAPISECT algorithm manages the
lower and upper bounds of the frontier intervals in two separate
heaps instead of a single heap as in the basic scan-line algorithm.
As a result, heap insertions are more efficient than in the basic
scan-line algorithm since each heap is 50% smaller (so it takes
less time to adjust the heap structures when inserting an
element). Thus the TWIN HEAPISECT algorithm is more
efficient than SCANLINEISECT.

3.4 Probe-based algorithm

The probe-based intersection algorithm usually runs faster for ID
lists than the merge-based intersection algorithm in real
applications. A similar idea is used here to devise a probe-based
algorithm to accelerate the interval list intersection process.
Specifically, each interval in the shortest interval list is
enumerated while the other interval lists are probed for intervals
that overlap with it.

Input: X → set of interval lists
Output: Z→ resulting interval list

1 for all k є [1,n] do

2. Let x1 be the first interval Xm
3. Insert lb(x1) to min heap H
4. a←0,b←0,
5. while H≠ φ

6. Let t be the top element in H
7. Let X є Rj be the corresponding interval of l
8. if b<1 and a≤b then Add [a,b] to G
9. else
10. a←1
11. if b<ub(r) then b ←ub(r)
12. pop l from H
13. Let r’ be the next interval or r in Rj
14. Insert lb(r’) to H
15. if a≤b then Add [a,b] to G
 return Z

Input: X → set of interval lists
Output: Z→ resulting interval list
1.
2. Let X be the min heap and Y be the max heap
3. for all k є [1,n] do
4. Let q be the frontier interval of Rk
5. Insert lb(rk) and ub(rk) to min heap H
6. Let m be the top(max) element in X
7. Let n be the top(minimum) element in Y
8. if m≤n ,add [m,n] to G
9. Let r є Rj be the corresponding interval of n
10. Remove lb(r) from X and pop n from Y
11. Let r’ be the next interval or r in Rj

12. Let lb(r’) and ub (r’) to X and Y respectively.
 return Z
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 687
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

4. Conclusion

We proposed a system called GINIX(Generalizes inverted index)
for keyword search in text database has an effective index
structure and efficient algorithms to support keyword search.
Fast scalable methods enhance the search speed of Ginix by
reordering documents in the datasets. The evaluation result
shows that Ginix not only requires smaller storage size than
existing inverted index, but also consists of greater keyword
search speed.

References

[1] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel,
Compression of inverted indexes for fast query evaluation, in
Proc. of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
Tammpere, Finland, 2002, pp. 222-229.

[2] W. Shieh, T. Chen, J. J. Shann, and C. Chung, Inverted file
compression through document identifier reassignment,

Information Processing and Management, vol. 39, no. 1, pp. 117-
131, 2003
Management of Data (SIGMOD ’08), pp. 1087-1098, 2008.

[3] H. Yan, S. Ding, and T. Suel, Inverted index compression and
query processing with optimized document ordering, in Proc. of

the 18th International Conference on World Wide Web, Madrid,
Spain, 2009, pp. 401-410.

[4] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D.
Srivastava, Fast indexes and algorithms for set similarity
selection queries, in Proc. of the 24th International Conference on
Data Engineering, Cancun, Mexico, 2008, pp. 267-276.

[5] H. He, H. Wang, J. Yang, and P. S. Yu, BLINKS: ranked
keyword searches on graphs, in Proc. of the ACM SIGMOD
International Conference on Management of Data, Beijing,
China, 2007, pp. 305-316.

[6] J. Zobel and A. Moffat, Inverted files for text search engines,
ACM Computing Surveys, vol. 38, no. 2, pp. 6, 2006

[7] G. Li, B. C. Ooi, J. Feng, J.Wang, and L. Zhou, EASE: An
effective 3-in-1 keyword search method for unstructured, semi-
structured and structured data, in Proc. of the ACM SIGMOD
International Conference on Management of Data, Vancouver,
BC, Canada, 2008, pp. 903-914.

[8] V. N. Anh and A. Moffat, Inverted index compression using
word-aligned binary codes, Information Retrieval, vol. 8, no. 1,
pp. 151-166, 2005.

[9] J. Zhang, X. Long, and T. Suel, Performance of compressed
inverted list caching in search engines, in Proc. of the 17th
International Conference on World Wide Web, Beijing, China,
2008, pp. 387-396.
[10] S. Agrawal, S. Chaudhuri, and G. Das, DBXplorer: A system
for keyword-based search over relational databases, in Proc. of
the 18th International Conference on Data Engineering, San Jose,
California, USA, 2002, pp. 5-16.

Input: X → set of interval lists
Output: Z→ resulting interval list

1. Sort x in ascending order of list lengths
2. for all x є X1 do
3. X1* ← (x)
4. for k=2,3,………..n do Xk* ←PROBE(x,Xk)
5. Add TWIN HEAP ISECT ({X1*…….Xn*}) to Z
6. return Z
7. procedure probe(x,X)

 Input: x: an interval
 X: an interval list

Output: X*: The list of all the intervals in X that overlap
with x

p1←Binary search(x,l,X,S)
p2←Binary search(x,u,X,S)
q1←Binary search(x,l,X,U)
q2←Binary search(x,u,X,L)
for pє[p1,p2] do Add [X.Sp,X.Sp] to X*
sort X* in ascending order of lower bounds
return X*

end procedure

IJSER

http://www.ijser.org/

	1. Introduction

